
Gas detectors for X-rays

Overall good energy resolution (<8% @ 5.9keV)
Low cost
Easy to operate (room temperature)
Large detection areas
Good radiation resistance

Gas detectors are based on the conversion of incident radiation in
electric charge which is then converted into an electrical pulse.

Signal amplitude is proportional to the number of electrons produced. 

Our attention at GIAN (Nuclear and Atomic Instrumentation Group) 
has been mainly drawn to Gas Proportional Scintillation Counters and
Gas Proportional Ionization Counters.



Gas proportional scintillation counter

Amplification stage: scintillation produced in the deexcitation of electron
impact excited atoms of the medium
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Recent investigation in gas detectors

GPSC

Problem: window Φ > 5mm - energy resolution degradation

Cause: Events off axis (with low solid angle)

Solution: exclude these events or compensate intensities.

1) Curved grid (@5,9 keV Φ = 25mm  R from 10,5 to 8%)
2) Mask at photossensor window (@5,9keV Φ = 38mm  R from 18 to 10%)
3) Digital signal processing (R improves 1% for Exr < 10 keV)



Curved Grid Gas Proporcional Scintillation
Counter (compensate intensities)

8% (from 10.5%) @ 6 keV Φ=25mm
Φ up to 40mm R~8%
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Photosensor deposited mask
(compensate intensities)

10% (from 18%) 
@ 6 keV
Φ=38mm

J.F.C.A.Veloso,J.M.F.dos Santos C.A.N.Conde

IEEE Trans.Nucl.Sci.42(1995)369

Normal PMT

Compensated
PMT

Normal PMT

Compensated
PMT



Signals from a 109Cd source and corresponding spectrum with
absorption events
a) in the scintillation region
b) in the scintillation/drift region with rise time discrimination
c) in the scintillation/drift region with long rise times (>4μs)

Digital signal processing (excluding events)

P.C.P.S.Simões, J.M.F.dos Santos, C.A.N.Conde,,Nucl.Intr,&Meth.A 422(1999)341



Al spectrum (244Cm)
a) direct spectrum
b) rise time discriminated spectrum

Digital signal processing (excluding events)

P.C.P.S.Simões, J.M.F.dos Santos, C.A.N.Conde,,Nucl.Intr,&Meth.A 422(1999)341
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Recent investigation in gas detectors

Xenon filled detectors

Monte Carlo simulation study

Problems detected and explained:

1) Energy non-linearity at absorption edges
2) Fano factor and w–value discontinuities at absorption edges



Break in energy linearity in Xe filled detectors:
Monte Carlo simulated and experimental results

K shell L shell and subshells

a), b) Monte Carlo
c) Experimental (with CPSC)
d) Experimental MSGC-based results
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Recent investigation in gas detectors

Xenon filled detectors

Known problem:
Pulse height distortion caused by electron loss to the entrance 

window

Cause: low photon absorption depth at specific photon energies

Solution:
Lighter absorption media – e.g. Xe-Ne mixtures to increase

absorption depth

Monte Carlo simulation study of Xe-Ne mixtures
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GPSC experimental and Monte Carlo results
with Xe-Ne mixtures
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R= 35.3% in pure Xe
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SiO2 excited with alpha particles
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GPSC experimental results
with Xe-Ne mixtures

0

4

8

12

16

20

0 2 4 6 8
X-ray energy Exr (keV)

N
um

be
r 

of
 x

-r
ay

 e
ve

nt
s 

(1
02 )

excited with 55Fe source
excited with 244Cm  source

C
O

Al Si

K

Ca

Ti

Mn

Andalusite  (Al2SiO5) 



X-ray absorption
flowchart in Xe-Ne

mixtures
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Left – w-value and Fano factor as a function of Xe concentration
Right - mean number of electrons at Xe and Ne absorption edges
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On-going investigation in GPSC

Known problem:
The PMT makes the GPSC bulky, somewhat fragile and more 

expensive

Solution:
Find an alternative to the PMT

Fields under investigation:
CsI covered microstructures in different gas atmospheres (Monte 

Carlo simulation and experimental studies)
Photo-photomultiplier (simulation and experimental work)



Gas proportional ionization counter

Amplification stage : charge multiplication close to the anode
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Recent investigation in gas detectors

CGIP
Problem: improve energy resolution

Solution:
- Use of Penning mixtures to increase the number of ion pairs
- Precise definition of the multiplication volume



GPIC experimental results for Xe-Ne
mixtures
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Precise definition of the multiplication volume: 
the gridded GPIC 



Experimental results with gridded GPIC
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Other on-going fields of research at GIAN

Effect of the polarization of absorbed X-rays on the final profile
of the electron cloud

Study of Astrophysical polarized γ-rays with pixelated CZT 
detectors (with ESA & Italian group in a consortium)

Study of solar x-ray physics in satellite-born detectors (with China)

Exotic atoms (muonic hydrogen Lamb shift measurements) (with PSI 
CH)

Experimental measurements and Monte Carlo calculation of
transport parameters of noble gas ions (Ar+, Ar++, … in Ar)
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Monte Carlo calculated effect of the polarization
of X-rays on the final profile of the electron cloud

Unpolarized photons Polarized photons
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Radiation interaction and electron transport

Photoelectric effect
(Excited ion)

Radiative decay Auger/Coster-Kronig
effect

photoelectric effect
Photon interaction Compton effect

Rayleigh scattering

elastic collision
Electron interaction excitation

ionization



Electron production – primary electron cloud
formation

Through a sequence of the processes referred above the energy of the incident
photon is converted intoa number of electrons whose energies are below the
ionization porencial of the abosrbing medium => the primary electron cloud

external (associated electronics, drifts)
Causes  

internal (statistical fluctuations due to the discrete nature of the signal)

The number N of electron produced per incident X-ray photon varies.

Internal or intrinsic causes set a limit to the detector performance

This limit is know as intrinsic energy resolution.



Energy Resolution
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Polarization
direction

Polarization
direction

Angular differential photoionization cross-section 
for the emission of s-photoelectrons  (ß=2)
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on the angular distribution of photoelectrons
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for Xe-Ne mixtures



Digital signal processing (excluding events)

109Cd source 22.1keV events
a) absorbed in the drift region
b) whose “components” arrive at the

scintillation region in separate times
c)    absorbed near the detector walls. 
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